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A B S T R A C T   

In recent years, deep learning methods based on brain image have been used for the diagnosis of cognitive 
impairment-related disorders. With the development of neuroimaging techniques, multi-modality image such as 
structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) reflect structural and 
functional information of the brain respectively, and provide more techniques for the diagnosis of cognitive 
impairment diseases. Combining these complementary image features can lead to more accurate diagnostic as-
sessments compared to using a single modality. Therefore, how to effectively combine multi-modality image 
features to realize the diagnosis of cognitive impairment disease needs to be further explored. In this work, we 
propose an end-to-end multimodal 3D CNN framework based on ResNet architecture, which integrates multi- 
level features obtained under the role of attention mechanisms to better capture subtle differences among 
brain images, and achieves remarkable diagnostic performance through spatial pyramid pooling strategy and 
effective fusion of multi-modality features. In this process, we demonstrate that the multimodal framework is 
more effective by means of non-shared parameters for multi-modality features learning. Moreover, the visualized 
attention maps show that our model can focus on important brain regions relevant to disease diagnosis. The 
experimental results demonstrated that our method improved the diagnostic performance in AD diagnosis and 
MCI conversion prediction by 6.37 % and 3.51 % compared to the single modality, and it also outperformed some 
recent state-of-the-art multimodal methods. Especially in AD diagnosis achieved an average accuracy of 94.61 %, 
which provides a more feasible technology for diagnostic assessment of patients with AD.   

1. Introduction 

As global aging continues to accelerate, the number of people with 
cognitive impairment-related disorders is increasing every year. Alz-
heimer’s disease (AD), as the most common symptom of brain disorders, 
is a degenerative disease of the central nervous system characterized by 
memory, language, cognitive and even emotional impairment, which 
has a significant impact on the daily life of patients [1]. In the early 
stages of AD, it is known as mild cognitive impairment (MCI). MCI has 
not yet reached the severity of dementia and will not affect the daily 
lives of patients, but more than one-third of mild cognitive impairments 
slowly progress to AD within 5 years [2]. However, at present, there is 
no specific drug or treatment option that can cure people with AD. If 
appropriate medical intervention is provided in the early stages of AD or 

even MCI, it can alleviate the continuous deterioration of the disease and 
improve the quality of life of patients [3]. Therefore, achieving early 
prediction of AD has become particularly important, but it also remains 
a very challenging issue in the clinical practice. In recent years, with the 
development of artificial intelligence techniques, some novel 
computer-aided methods have been proposed to diagnosis the cognitive 
disorders from brain images [4]. 

Currently, the clinical diagnosis of AD requires a comprehensive 
assessment based on neuropsychological assessment, cognitive- 
behavioral assessment, medical imaging and other ancillary tests [5]. 
Imaging is a relatively convenient and reliable diagnostic aid that plays 
an important role in detecting and confirming Alzheimer’s disease, and 
the results of imaging examinations can assist physicians in improving 
the accuracy of Alzheimer’s disease diagnosis to a certain extent [6]. 
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With the development of medical imaging technology, a variety of 
neuroimaging techniques have emerged, including structural imaging 
(sMRI, DTI, etc.) and functional imaging (PET, fMRI, etc.). sMRI, as a 
non-invasive and radiation-free structural imaging, is currently the most 
widely used imaging tool in clinical practice. Doctors can observe some 
relatively obvious structural changes in the brain through sMRI to assess 
AD, and these changes mainly focus on cerebral cortex thinning, ven-
tricular enlargement, and hippocampal atrophy. In functional imaging, 
FDG PET is a molecular examination modality to visualize glucose 
metabolism by injecting radioactive elements into the body to analyze 
the metabolic function of the brain, and its imaging mainly shows 
reduced glucose metabolism in the posterior cingulate gyrus and pari-
etal temporal lobe cortical regions [7]. PET reflects functional metabolic 
changes in the brain different from structural imaging, and functional 
imaging is more advantageous in reflecting of some pathophysiological 
mechanisms and even in the accurate assessment [8]. Both of the above 
brain imaging techniques provide more basis for screening and early 
diagnosis of AD. 

The accumulation of medical image data and the development of 
artificial intelligence technology provide opportunities and challenges 
for computer-aided diagnosis of AD. With the support of deep learning 
methods, through learning general features by 3D CNNs acting directly 
on brain images can realize the tasks of AD screening and assisted 
diagnosis [9,10,11]. Like CNN-based approach can provide better 
nonlinear representation than traditional machine learning methods and 
also eliminates the complex and time-consuming process of manual 
feature extraction. Some of these studies [12,13] combined with atten-
tion mechanisms and hybrid strategies based on CNN-backbone to 
achieve improved diagnostic performance. From the above and 
currently researched studies [14], the current methods for image-based 
AD diagnosis mainly utilize sMRI, but the information provided by 
single modality image is limited due to factors such as neuroimage 
manifestation of cognitively impaired patients with non-specific lesions 
and relatively subtle structural differences among subjects. Therefore, in 
the case of some patients with low specificity of neuroimage, single 
modality-based AD assessment remains difficult to realize. 

Compared with single modality information, multi-modality brain 
images provide richer and more comprehensive complementary infor-
mation. In neuroimaging, both sMRI and PET belong to the 3D volu-
metric image. PET simulates the metabolic changes in brain regions, 
while sMRI reflects the morphological changes of brain regions. For this 
reason, complementary and more comprehensive image features can be 
obtained by combining two different pathological manifestations, which 
can help to achieve more accurate AD screening and diagnosis. Huang 
et al. [15] a 3D CNN with VGG as the backbone to integrate multimodal 
MRI and PET information for AD diagnosis and prognosis. Lin et al. [16] 
utilized a reversible GAN to solve the problem of missing PET data and 
proposed a multimodal 3D CNN architecture for AD diagnosis, which 
achieved better diagnostic performance than using single modality. 
Aviles-Rivero et al. [17] proposed a semi-supervised hypergraph 
learning framework combining multi-modality MRI and PET with gene 
data for AD diagnosis, which considers higher order relations among 
multimodal data. These studies have shown that an improved diagnostic 
performance can be achieved by combining multi-modality sMRI and 
PET, which has gradually become the focus of current research in 
computer-aided diagnosis of AD. The study [18] also indicated that 
multimodal methods and biomarkers combined will lead to more ac-
curate diagnosis on deep learning-based methods in the future work. 

As can be seen from the summary and review of the research in this 
area [19], most of the studies so far are still dominated by single mo-
dality methods. Although some multimodal methods are exemplified in 
the previous narrative, there are still some issues that need to be further 
solved and explored in the trend of multimodal methods. First, most of 
the CNN-backbone models are trained on natural images, not modeled 
for the feature representations of brain images [20,21]. For example, 
adopting VGG or ResNet backbone to extract features of brain image 

directly for AD diagnosis in fusing multimodal methods, which is not yet 
able to obtain specific features for the characteristics of the brain image 
itself. Secondly, brain atrophic and metabolic changes in cognitively 
impaired patients are often brain-wide without specific focal regions 
respectively, it makes a challenge to the effectiveness of two modality 
combinations and the performance improvement of some multimodal 
methods limited. In multimodal methods, many studies have achieved 
diagnosis only by concatenating extracted multimodal features [15,20, 
22], these approaches have not been able to fully utilize the advantages 
of complementary multi-modality image information. Narazani et al. 
[23] further explored multimodal methods through feature combination 
and image-level fusion, they found that the diagnostic performance of 
multimodal methods may not yet outperform that of PET methods. And 
the improvement of some multimodal methods is not obvious relative to 
PET modality, which is also the issues in current multimodal methods. 
To sum up, how to effectively utilize modality images for multimodal 
methods to achieve better AD diagnostic performance is the key of this 
area. 

To this end, for two modality sMRI and PET, this study will construct 
a more effective diagnosis network and explore a combination method 
based on multi-modality image to achieve more accurate AD diagnostic 
performance. In clinical knowledge, structural and metabolic imaging 
features during the progression of cognitive normal to AD dementia will 
change differently. Structural changes primarily include the atrophy of 
brain gray matter (GM) [24], which is generally brain-wide and not 
limited to the hippocampus and amygdala. Such whole-brain changes 
are also present in metabolic features, including reduced glucose 
metabolism in the posterior cingulate gyrus and right parietal lobe [8,9], 
this is one of the reasons why cannot diagnose AD through specific brain 
regions alone. Based on the properties of neuroimages, in this work, we 
design an end-to-end 3D CNN framework that integrates 3D attention 
mechanisms and multi-layer feature fusion strategies for realizing AD 
diagnosis and MCI prediction tasks based on multi-modality brain im-
ages. Specifically, we implemented AD diagnosis using sMRI GM and 
PET as multimodal images and compared them with single modality 
method, feature combination approach, decision fusion approach, and 
some current studies, respectively, which demonstrated the effective-
ness of our proposed multimodal method and achieved remarkable 
improvement in both AD diagnosis and MCI conversion prediction. In 
addition, we compare the AD diagnosis results of two modality images 
and analyze the effect of shared parameter training in multimodal 
approaches. 

In summary, the main contributions of our work are as follows. (1) 
Considering the characteristics of brain images, to reduce the loss of 
effective information in convolutional feature extraction, we integrated 
multi-level features in the fully connected layer under the attention 
mechanism. (2) We implemented feature extraction by a twin-based 
network based non-shared parameters training for multi-modality im-
ages separately. (3) We adopted the strategy of spatial pyramid pooling 
to achieve down-sampling for fused features, that making features more 
robustness. (4) We integrated the strategy of feature combination and 
decision fusion for final diagnostic prediction. (5) We visualized atten-
tion maps show that our model can focus on important brain regions 
relevant to disease diagnosis and analyzed the advantages of our 
multimodal method. (6) We obtained improved results in the chal-
lenging prediction task of MCI conversion, which is more clinically 
relevant for the early screening of AD. 

2. Dataset and materials 

The public neuroimaging data used in this work were all from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 database [25]. 
This study used T1-weighted MPRAGE structural MRI and 

1 http://adni.loni.usc.edu 
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18-fluorodeoxyglucose PET (FDG-PET) image (six 5-min frames 
30–60 min post injection) data from the ADNI baseline for AD assess-
ment, acquiring paired multimodal images from the same subject and 
from the closest acquisition date. MRI and PET acquisition was ac-
cording to the ADNI acquisition protocol [26], more detailed informa-
tion can be found at www.adni-info.org. In total, our dataset has 850 
subjects including 215 AD, 246 NC (Normal Contral) and 389 MCI. We 
further divided the acquired MCI category into 151 pMCI (progressive 
MCI) and 238 sMCI (stable MCI), MCI subjects who developed AD within 
3 years were labeled as pMCI and those who did not convert to AD were 
labeled as sMCI. The subjects included male and female, ranging in age 
from 61 to 87 years. Table 1 shows the demographic statistics for each 
category of subjects in our study. We divided the dataset by subject-level 
split way according to the number of subjects in the ratio of 70 %, 15 % 
and 15 %, namely the first n-1 numbered subjects used for training, and 
half of the subjects after n used for validation and the other half for test. 
Fig. 1 shows two ways of splitting the dataset. All subjects in our study 
are not from the same person, which avoids inability to accurately test 
diagnostic performance due to data leakage like the way of slice-level 
split [27,28]. 

This work used conventional procedures for brain image pre-
processing, correction, affine registration. Specifically, all sMRI images 
were preprocessed by anterior commissure-posterior commissure 
correction and affine alignment by the SPM.2 Where the N4 algorithm 
[29] was applied to correct the non-uniform tissue intensities, then the 
sMRI images were performed affine alignment to MNI152 space [30] 
with the normalized template. Final we used the SPM CAT12 to extract 
GM tissue from the preprocessed sMRI. For FDG-PET images, they were 
co-registered according to their corresponding N4 bias-corrected sMRI 
images on Clinica platform [31,32]. The resolution of both preprocessed 
brain images was 121 × 145 × 121. Fig. 2 shows the three sectional 
views of brain images preprocessing. 

3. Methods 

In this study, we propose an end-to-end multimodal 3D CNN 
framework for early diagnosis of AD. Firstly, to address the character-
istics of brain images, we designed a feature extraction sub-network 
based on the ResNet [33] architecture, which integrates multiple 
layers of features under the role of attention mechanism to better cap-
ture the weak changes in brain images and further improve the perfor-
mance of feature extraction. Secondly, we use twin-network to feature 
extract and learn features by the way of non-shared parameters for sMRI 
and PET images, respectively, and then use the strategy of spatial pyr-
amid pooling to achieve dimensionality reduction for fused features. 
Finally, AD diagnosis based on multi-modality images is achieved by 
feature combination and decision fusion. Our proposed multimodal 3D 
CNN framework is shown in Fig. 3. 

3.1. 3D ResNet architecture 

Different from traditional methods of manually extracting features 
such as cerebral cortex thickness and brain volume, 3D CNN directly acts 

on brain images to learn general features, and eliminating the complex 
process of traditional manual feature extraction. In order to effectively 
encode the spatial information in brain images, we utilize 3D ResNet18 
as the network architecture, which has achieved remarkable success in 
medical image tasks [34,35]. The network consists of a 7 × 7 × 7 
down-sampling layer, four convolutional layers, pooling layer, fully 
connected layer, and softmax layer. In the convolutional layers, the size 
of the kernel is 3 × 3 × 3. The number of filters in the convolution layers 
is 64, 128, 256, and 512. 

3.1.1. Attention block 
In order to pay more attention to the brain area in feature extraction, 

we designed the attention block to be applied in our network for brain 
image. In the neuroimaging of AD, there is general no lesion region, but 
rather morphological or metabolic changes in multiple brain regions. 
The spatial attention [36] is focused on a local region in space. For this 
reason, we designed the attention block to adapt to 3D brain images. The 
feature maps generated from the convolutional layer are fed to the 
attention block. The input feature maps are expressed as M = [M1, ⋅⋅⋅, 
MC], where Mi ∈ RH×W×D (i = 1, 2, …, C) represents the feature map of 
the ith channel, and C represents the number of channels. Then, we 
perform cross-channel average pooling and max pooling on M to 
generate two feature channels, Mavg and Mmax respectively. The Mavg 
and Mmax share the same multi-layer perceptron to learn the dependency 
between channels. Finally, the weight coefficients are obtained by the 
sigmoid function as the nonlinear activation, and calculate the final 
attention maps A. Then the attention computation can be expressed as 
A = σ(W1(W0Mavg) + W1(W0Mmax)). 

The architecture of the attention block is shown in Fig. 4. Compared 
with the previous SE-Net attention [37], our attention block enhances 
the information interaction of channels and improves the overall feature 
representation. The attention block can be seamlessly integrated into 
our 3D CNN for end-to-end training. As mentioned above, the essence of 
our attention mechanism lies in modeling the importance between each 
feature, and once the weights of each feature channel are obtained, the 
weights are applied to each of the raw feature channels. In this way, 
some key feature maps of brain image in A are attentioned under the 
effect of weights when network training in AD diagnosis task. 

3.1.2. Multi-level features concatenation 
Different from other diseases, such as cognitive impairment, there is 

no specific target regions in brain. Moreover, the spatial information of 

Table 1 
The demographic information of dataset used in this study.   

Numbers Gender(M/F) Age(yrs) 

AD 215 126/89 74.9 ± 7.7 
NC 246 125/121 74.1 ± 5.8 
sMCI 238 135/103 72.5 ± 7.4 
pMCI 151 89/62 74.4 ± 7.1  

Fig. 1. Two ways of splitting the dataset, where the same color represents the 
image data from the same subjects. 

2 http://www.fil.ion.ucl.ac.uk/spm 
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brain image is complex, and the differences between individuals are not 
obvious, which makes the role of attention mechanism in brain images 
relatively limited. To consider these clinical characteristics of brain 
image, we integrate low-level features and high-level features of the 
convolutional layer in the last fully connected layer in order to reduce 
information loss in feature extraction. Fig. 5 shows the principle of 

integrated multi-level features in the sub-network of multimodal 
framework. 

Throughout the sub-network, in order not to affect the acquisition of 
raw low-level features and raw high-level features of brain image, our 
attention block is not used directly in the convolutional layers, but acts 
independently on the brain feature maps of each convolutional layer, the 
raw feature maps in the network continue into the next convolutional 
layer. The global average pooling (GAP) is performed for the attention- 
based features obtained after four convolutional layers, and the multi- 
level features obtained after GAP are concatenated and then flattened 
into a 960 one-dimensional vector as the input of the fully connected 
layer. This sub-network has its backbone as 3D ResNet18 followed by a 
fully connected layer with softmax function to predict the disease cat-
egories in expression classification task. 

Fig. 2. The raw brain images were aligned to MNI152 space. The left and right sides show the three sectional views of sMRI and PET images respectively.  

Fig. 3. Our end-to-end multimodal 3D CNN framework based on sMRI and PET images. The inputs of the network are sMRI GM and PET images respectively, and the 
trained multimodal network directly outputs the final diagnostic results. 

Fig. 4. The architecture of the attention block in our network.  
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3.2. Multimodal network framework 

Our multimodal network framework is a Twin-network structure, 
which contains of two same sub-network MAResNet18 but each network 
learns features through its own parameters. After multi-modality fea-
tures acquisition and fusion, dimensionality reduction is achieved using 
spatial pyramid pooling strategy [38,39]. Finally, we combined with 
feature combination and decision fusion to achieve the final output 
prediction. 

3.2.1. Twin-network for multimodal features learning 
The performance of the feature acquisition is often enhanced by the 

learning approach of siamese-network with shared parameters in some 
multimodal studies, and the different presentation of cognitive disorders 
in sMRI and PET images makes the network shared parameters inef-
fective in learning different modality features. It has been shown that the 
diagnostic performance of sMRI and PET multimodal features is not 
effectively improved by the shared parameters approach [23]. In order 
to efficiently acquire the features of multimodal images, we acquire the 
features of each image separately in the form of twin-network (without 
shared parameters), which means the two sub-networks have the same 
structure but learn different image features by their respective network 
parameters. Fig. 6 shows two types of multimodal networks for features 
learning. 

3.2.2. Integration with feature combination and decision fusion 
Different from the traditional multimodal methods, our framework 

integrates the advantages of feature combining and decision fusion 
methods. First, the output feature maps are combined after every con-
volutional layer of the twin residual networks, which means that the 

feature maps of both modalities are combined with the corresponding 
features after four convolutional layers. Second, since our network ar-
chitecture is containing of a twin-network, the output of the two sub- 
networks and the output of the combined features are fused in the 
final decision stage for the final prediction. In this way, our multimodal 
framework implements further decision making by learning the inde-
pendent modality and the combination of different modalities. 

3.2.3. Spatial pyramid pooling for combined features 
Multi-modality images provide a diversity of complementary infor-

mation with better specificity through feature combination. How to 
downscale and acquire multimodal features effectively is the key to 
improve the diagnostic performance. Spatial pyramid pooling (SPP) has 
a remarkable result in some medical imaging studies by reducing the 
dimensionality of multimodal features while retaining more information 
[39]. In both two sub-networks, the feature maps of each convolutional 
layer will generate new feature maps through the attention block, we 
perform 3D SPP after concatenating the two modality feature maps of 
each layer. The three scale feature sizes after SPP are 4 × 4 × 4, 2 × 2 × 2 
and 1 × 1 × 1, then the flattened features are down sampled by 1D 
convolution to the dimension of output feature maps in the corre-
sponding convolutional layer, i.e., 128, 256, 512, and 1024, respectively 
(the concatenated features from two sub-networks). Fig. 7 illustrates the 
principle of 3D SPP block used for the combined feature maps. As can be 
seen through the principle of SPP action in Fig. 7, SPP turns one pooling 
into multiple scale pooling, and then integrates the multi-scale features 
obtained after pooling. Adopting different sizes of pooling windows to 
act on the feature map realizes the downsampling of the combined 
multimodal features while considering the multi-scale information in 
feature representation stage [40], which makes the concatenated pool-
ing features more robust and makes the combination of the 
multi-modality image features with complementary properties more 
effective. 

3.2.4. Decision output of the network 
There are three softmax functions at the final output of the network, 

corresponding to the output of the fully connected layer of the two sub- 
networks and the output of the fully connected layer after feature 
combination. The softmax function for N class probabilities of the output 
layer is as follows: 

softmax
(
zj
)
=

exp
(
zj
)

∑N
j=1

(
exp

(
zj
)) (1)  

where zj in the above (13) represents the jth value in the last output 
N × 1 vector of the network. N is the number of categories, the calcu-
lated softmax(zj) value is between (0, 1). 

The three output probabilities are given weights to achieve decision 
fusion and the final output is expressed as: 

softmax(z)final = a × softmaxm + b × softmaxp + c × softmaxc (2)  

where softmaxm represents the output probability from the MRI network 

Fig. 5. The structure of integrated multi-level features in sub-network.  

Fig. 6. Two types of multimodal networks for features learning.  Fig. 7. The principle of SPP block used for the fused feature maps.  
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branch, softmaxp represents the output probability from the PET 
network branch, and softmaxc represents the output probability from the 
combined features branch. a, b, c are the weighting coefficients and 
a + b + c = 1 (a = b), which we set to 0.2, 0.2, 0.6 respectively in our 
multimodal network. 

4. Experimental results and prospect 

4.1. Experimental settings 

Our experiments were implemented in PyTorch platform and ran on 
a Windows x86–64 computer equipped with a GPU NVIDIA P100 16 G. 
We followed the same data split strategy to construct three different 
subsets with different test sets, the average of three classification accu-
racies is used as the final result. The purpose of this is to avoid some 
subjects with distinct imaging features appearing in a particular test set, 
since no fixed subjects are formulated for the test set in the ADNI 
database. Further, we also select a subset to evaluate the performance of 
model by a five-fold cross validation strategy (the ratio of validation set 
is nearly 15 %). 

The hyperparameters tuning in network training are set as follows. 
We use the Adam algorithm as the optimizer, and the cross-entropy loss 
function is used to optimize the parameters. The learning rate of the 
optimizer is initially set to 1e− 4, after 30 epochs, the learning rate is 
halved every 10 epochs until to 5e− 6. The network model is trained for 
60 epochs. During the network training, the batch size is set to 6, a 0.5 
dropout layer is used before the fully connected layer. To compare all 
methods in this work, the training hyperparameters are same in each 
model. In addition to the usefulness of the AD vs. NC classification for 
disease exclusion, the prediction task of MCI conversion (sMCI vs. pMCI) 
is of great importance for the early treatment of AD patients. The 
convolution kernel is initialized randomly in AD vs. NC task and then we 
use the network parameters learned to initialize the training network for 
sMCI vs. pMCI task. We evaluated diagnostic performance based on 
accuracy (ACC), sensitivity (SEN), specificity (SPE) and the area under 
curve (AUC). 

4.2. Experimental results and discussion 

In this section, first we performed ablation experiments on two types 
of single modality respectively: sMRI and PET images. In the single 
modality-based approaches, we used the baseline 3D ResNet18, 
attention-based 3D ResNet18 (which is named AResNet18), AResNet18 
with multi-level features (which is named MAResNet18) for comparison, 
and showed the visual effects of the attention mechanism on AD diag-
nosis. Second, ablation experiments of multimodal diagnosis methods 
based on our feature extraction method are conducted, including the 
effects of shared parameters in multimodal methods on AD diagnosis, as 
well as the comparison and analysis of feature combination, decision 
fusion, and our proposed multimodal method. Finally, our proposed 
multimodal network is compared with other state-of-the-art methods, 
which demonstrates the effectiveness and superiority of our method. 

Tables 2 and 3 summarize the results of the two single modality sMRI 
and PET based classification tasks performed in our work, respectively. 
When using only the 3D ResNet baseline model, the sMRI-based classi-
fication of AD vs. NC achieved an accuracy of 85.29 % and the PET- 
based achieved 88.24 %. The PET-based performance outperformed 

the sMRI, as well as in the sMCI vs. pMCI prediction. Then we combined 
the attention block after the last convolution layer of ResNet18 archi-
tecture as the AResNet18. From the results, it is seen that the diagnostic 
performance of the model based on the attention mechanism is 
improved. Due to the complex properties of brain image, the application 
of attention mechanism in brain image needs more research and 
exploration. Although some studies have demonstrated changes in the 
hippocampus and amygdala in sMRI and in the cingulate gyrus and 
parietal lobe in PET [7], their changes are not significant for the whole 
brain. Moreover, there is no clinical gold standard for the diagnosis of 
AD based on brain image by far [41]. Thus, the attention mechanisms 
also have a limited effectiveness in the diagnosis of cognitive impair-
ment. The diagnostic results based on our single-modality method 
(MAResNet18) are further improved. In the classification of AD vs. NC, 
the accuracy based on sMRI reached 88.24 %, while the accuracy based 
on PET reached 90.69 %. For the classification of sMCI vs. pMCI, the 
accuracy based on sMRI and PET was 73.68 % and 75.44 %, respec-
tively. With our method, we integrated the high-level and low-level 
features acquired under the role of attentional blocks, making the sub-
tle differences in brain image can be captured to achieve better diag-
nostic performance. It can also be found in our above results that the 
accuracy based on PET is higher than that of sMRI, the result that is also 
consistent with established clinical knowledge. Metabolic changes in 
PET imaging responses can detect functional brain changes and specific 
lesions in AD earlier than sMRI, which also provides a basis for future 
studies on the application of functional imaging in the early diagnosis of 
cognitive impairment. 

Then we analyzed the ablation experiments for the multimodal 
methods, which contains two same MAResNet18 as sub-networks in our 
multimodal framework to achieve feature extraction for brain images of 
both modalities separately, and the results are shown in Table 4. First, 
for shared parameters approach we performed ablation experiments in 
methods with feature combination (FC) and decision fusion (DC). From 
the results, we can see that the diagnostic performance of learning by 
shared parameters is not improved, and even decreased relative to that 
of PET, which is consistent with the research results [23]. The reason we 
inferred that the representation of AD features in sMRI and PET re-
sponses are different, such as those in sMRI mainly include atrophy of 
hippocampus and temporal lobe, while those in PET are mainly meta-
bolic changes in cingulate gyrus and parietal lobe, and these different 
changes are reflected in different brain regions, so the different features 
of each modality cannot be learned through sharing parameters. From 
the comparison results, it is clear that the twin-based network (non--
shared parameters) works better due to the fact that each network learns 
the features of the corresponding modality features individually, thus 
allowing the feature fusion takes advantage of modality complemen-
tarity. In addition, from the standard deviation, it can be seen that the FC 
method is more stable. Although the DC method achieves a higher ac-
curacy on a certain subset of tests, it differs from the results of the 
validation set during model training. Fig. 8 shows the classification ac-
curacy over three folds based on two different training types of multi-
modal framework. To sum up, in order to capture the features of each 
modality effectively, our multimodal approaches are performed by the 
way of twin-network. 

Under the twin-network approach, we conducted further ablation 
experiments with the SPP-based feature-combined method (SPFC) and 
our multimodal method (SPDFC), the results are shown in Table 5. 

Table 2 
The classification results of ResNet architecture based on single-modality sMRI image.  

Methods AD vs. NC sMCI vs. pMCI  
ACC SEN SPE AUC ACC SEN SPE AUC 

ResNet18 85.29 81.25 88.89 0.849 70.18 59.09 78.09 0.686 
AResNet18 87.50 85.94 88.89 0.874 72.81 54.55 84.29 0.694 
MAResNet18 88.24 85.42 90.74 0.881 73.68 65.91 79.05 0.721  
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Incidentally, the diagnostic performance of the SPP-based (SPFC) is 
higher than that of the multimodal method without SPP block (FC(T) in 
Table 4). This shows that SPP plays a better pooling role for multimodal 
features. Under the influence of feature combination and decision 
fusion, our multimodal method has been further improved. The best 
accuracy was achieved in both prediction of AD vs. NC with 94.61 % and 
sMCI vs. pMCI with 77.19 % respectively, and there were significant 
improvements compared to previous single-modality methods. Mean-
while, it also has good performance in sensitivity and specificity. 
Sensitivity indicates the accuracy with which AD patients are diagnosed 
correctly, and specificity refers to the accuracy with which a healthy 
population can be correctly diagnosed. We also compared the weight 
parameters of the multimodal method, in the formula (2), c was assigned 
weighting values of 0.5 and 0.6, respectively. From the standard devi-
ation, it can be seen that the model is more stable when the weight is 0.6. 
Overall, our proposed multimodal method produced the best results in 
terms of classification performance and stability. We conclude that the 

performance improvement depends on the following four aspects. First, 
our effective feature acquisition, which we have validated on single 
modality based on attention mechanism and multi-level features inte-
grated approach. Secondly, we trained the network by means of twin- 
network so that each sub-network can effectively learn the respective 
features of different modality images. Thirdly, the strategy of SPP makes 
the down-sampled fused features more robust, effectively preserving 
multimodal feature information. Finally, we combine the feature fusion 
and decision fusion under the framework of multimodal twin-network. 
Fig. 9 summarizes the comparisons between single modality and 
multimodal approaches in a box plot showing classification accuracy 
over three experiments. Fig. 10 illustrates the plots of training process 
for single modality and multimodal methods. During network optimi-
zation, the training and validation curves of the multimodal method 
converge faster and smoother, and the accuracy of validation is obvi-
ously improved, which reflect the better performance of our proposed 
multimodal method. In addition, due to the small amount of brain image 
data used for AD diagnosis, the validation curves are accompanied by 
more vibrated on the single modality method, whereas the vibrate 
phenomenon is significantly less on the multimodal method. 

3D Grad CAM can provide better interpretability of AD diagnostic 
models. We applied 3D Grad CAM to our proposed method to show some 
important regions of interest to the network. Fig. 11 shows the feature 
maps of low-level features and high-level features in our model under 
MRI GM of an AD subject (128S0740) and a NC subject (128S4599), the 
coronal view of MRI is more intuitive. As can be seen from the feature 
maps of both convolutional layers, our attention is focused on the hip-
pocampal regions and part of the cerebral cortex. Fig. 12 shows the heat 
maps of attention to PET of an AD subject (128S0740) and a NC subject 
(128S4599), the sagittal and axial views of PET image are more intui-
tive, where include the posterior cingulate gyri, parietal lobule and 
precuneus marked as some important regions. The regions are also 
consistent with medical clinical variations [7,42]. While the higher-level 
features and the lower-level features in our method reflect detailed and 
global attention effects, respectively, which we further combine to 
obtain better diagnostic performance. 

The datasets used for brain disorders diagnosis tend to be small, and 
in many cases the trained models are unstable. For example, the per-
formance of the models trained on the different dataset varies. For this 
purpose, we performed a five-fold cross validation strategy on a fixed 
sub-dataset via our SPDFC (0.6) multimodal method. Fig. 13 shows these 
five test ACCs and AUCs of two diagnostic tasks. Specifically, we ach-
ieved average accuracy of 93.83 % and 77.19 % in AD diagnosis and MCI 
conversion prediction, with standard deviations of 1.23 and 1.24, 
respectively. In terms of AUC, 0.937 and 0.762 were obtained, with 
corresponding standard deviations of 1.18 and 2.38 respectively. The 
experimental results show that the ACCs and AUCs of our repeatedly 
trained models are similar in several tests, and the two standard de-
viations are relatively small, which also indicates the feasibility and 

Table 3 
The classification results of ResNet architecture based on single-modality PET image.  

Methods AD vs. NC sMCI vs. pMCI  
ACC SEN SPE AUC ACC SEN SPE AUC 

ResNet18 88.24 84.38 91.67 0.880 71.93 54.55 82.86 0.687 
AResNet18 88.98 85.94 91.67 0.888 73.68 63.64 80.00 0.718 
MAResNet18 90.69 87.5 93.52 0.905 75.44 63.64 85.71 0.724  

Table 4 
The classification results of two different training types in our multimodal 
methods.  

Multimodal AD vs. NC 

Siamese-network ACC SEN SPE AUC 
DC(S) 88.73(1.70) 87.50 89.81 0.891 
FC(S) 89.71(1.47) 86.46 92.59 0.895 
Twin-network ACC SEN SPE AUC 
DC(T) 91.67(3.70) 89.58 93.52 0.916 
FC(T) 92.65(1.47) 89.58 95.37 0.925  

Fig. 8. The accuracy over three folds based on two different training types of 
siamese-network(S) and twin-network(T). 

Table 5 
The classification results of our multimodal methods based on sMRI and PET images.  

Methods AD vs. NC sMCI vs. pMCI  
ACC SEN SPE AUC ACC SEN SPE AUC 

SPFC 93.38(0.85) 89.06 97.22 0.931 76.61(1.76) 68.18 81.90 0.75 
SPDFC (0.5) 94.12(2.08) 92.19 95.83 0.933 76.61(3.65) 60.61 86.67 0.736 
SPDFC (0.6) 94.61(0.85) 92.19 97.22 0.947 77.19(1.01) 68.18 82.86 0.755  
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stability of our method. 

4.3. Comparison to the related research and prospect 

Furthermore, we compared our method with other deep learning- 
based studies that are based on the ADNI dataset. Although some 2D 
CNN-based studies achieve the ideal diagnostic accuracy, many of the 
results are caused by the data leakage with dataset split strategy, with 
disparities of 10 % or even more than 20 % points in rigorous test 
evaluation [27]. From the selected AD diagnosis methods listed in 

Tables 6 and 7, it can be seen that our proposed method achieves 
94.61 % and 77.19 % accuracy in the classification of AD vs. NC and 
sMCI vs. pMCI, respectively, both showing superior diagnostic perfor-
mance compared to some state-of-the-art multimodal methods. In 
addition to a better accuracy, there are advantages in terms of sensi-
tivity, specificity and AUC. Sensitivity indicates the accuracy of patients 
being diagnosed correctly, i.e., a low rate of missed diagnoses, and 
specificity refers to the accuracy of being able to correctly diagnose a 
healthy population, all of which illustrate the effectiveness of our pro-
posed multimodal method. At the same time, our single-modality 

Fig. 9. The classification accuracy over three experiments based on single-modality and multimodal methods.  

Fig. 10. The plots from left-to-right are the training and verification curve based on sMRI (MAResNet18), PET (MAResNet18) and proposed SPDFC multimodal 
method, respectively. 

Fig. 11. The left and right panels shown for an AD subject and a NC subject, respectively. From left to right are the coronal view of MRI GM, CAM weights, and visual 
interpretation of the heat maps. We enumerate the application of Grad Cam to the first convolutional layer (top row) and the third convolutional layer (bottom row) 
to show the visualization of attention maps. 
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method also has some advantages, such as a PET-based accuracy of 
90.69 %, which outperforms some single-modality methods. In addition, 
our proposed method is an end-to-end AD diagnosis network framework 
that eliminates the need for manual feature extraction and other pro-
cesses, which has feasible applications in AD computer-aided diagnosis. 

Currently, some CNN-based multimodal approaches mainly focus on 
the structural improvement of network such as features concatenation at 
the fully connected layer, ignoring the importance of how to effectively 

combine multimodal features. In this work, we firstly extract features of 
both modalities effectively through the integration of attention mecha-
nism and multi-lever features. Secondly, we make each sub-network 
learn the respective features of different modalities through the 
training of twin-network, and then use SPP for dimensionality reduction 
to make the fused feature more robust. Finally, our networks achieve 
more effective diagnostic prediction through feature combination and 
decision fusion. In addition, we show the heat map visualization of the 

Fig. 12. The left and right panels shown for an AD subject and a NC subject, respectively. From left to right are the sagittal and axial views of PET image, CAM 
weights, and visual interpretation of the heat maps. We enumerate the application of Grad Cam to the second convolutional layer (top two rows) and the fourth 
convolutional layer (bottom two rows) to show the visualization of attention maps. 

Fig. 13. Five test results over five-fold cross validation strategy on a fixed sub-dataset, the left and right sides show the ACC and AUC respectively.  
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learned weights by our attention block for two modality images, indi-
cating that the brain regions attended to by our network are different for 
two brain images, which is consistent with the clinical knowledge that 
sMRI and PET images of AD appear differently. It also reflects the 
effectiveness of our method as well as explains why the training 
approach by a twin-network without shared parameters is more 
effective. 

Moreover, it is not difficult to find that the prediction of sMCI vs. 
pMCI in current research is not ideal, we analyze the reasons for this as 
follows: 1) the brain differences between sMCI and pMCI are not 
obvious, and the early symptoms of mild cognitive impairment are 
similar in both converters and non-converters, so it is difficult to classify 
them, which is also a difficult issue in clinical diagnosis; 2) the present 
work used brain imaging data at the baseline time, and converters need 
36 months to determine whether they are converted to AD patients. The 
brains of the converted subjects may differ significantly from their im-
aging data at the baseline due to the aggravation of the disease during 
these 3 years, and it is very difficult to improve the prediction perfor-
mance for the baseline imaging data without adding more a priori 
knowledge. 

With the development of artificial intelligence, the effective use of 
multi-modality data for computer-assisted AD diagnosis is the devel-
opment trend and focus in this field. Meanwhile, multi-modality data is 
not only limited to the imaging data, but with the accumulation of 
medical data, some combinations of non-imaging data will also suc-
cessively become the research objects of multimodal methods. We know 
that accurate prediction of MCI conversion can assist clinical diagnosis 
to achieve more accurate exclusion, and play an important role in early 
intervention of AD. In future work, how to explore the changes in brain 
regions through machine learning combined with clinical knowledge, 
and utilize the complementary and rich information of multi-modality 
medical data to achieve more accurate prediction of MCI conversion is 
a further challenge to be addressed in the future. 

5. Conclusion 

In this study, we propose an end-to-end multimodal 3D CNN 
framework that used sMRI and PET images to predict early Alzheimer’s 
disease. To reduce the loss of brain image information in feature 
extraction, we integrated multi-level features in the fully connected 
layer under the attention mechanism. We implemented features learning 
by a twin-based network via non-shared parameters training for multi- 
modality images. In multimodal framework, we used the SPP block 
and further combine the strategy of feature combination and decision 
fusion for final prediction to achieve a better diagnostic performance. In 
addition, the effectiveness of our approach is demonstrated by the 
visualization of the attention map, as the model can focus on important 
brain regions relevant to AD diagnosis. Compared to several state-of-the- 
art multimodal-based studies, our proposed method exhibits better or 
equivalent diagnostic performance in both AD diagnosis and MCI con-
version prediction tasks. 
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Table 6 
Classification results of AD vs. NC in studies based on single-modality and multimodal methods.  

Studies ACC SEN SPE AUC Method Subjects 

Wen et al. [28] 89.00 – – – ROI-based 3D CNN 336AD + 330NC 
Duan et al. [43] 89.58 – – – 2D VIT 64AD + 376NC 
Adeli et al. [44] 92.10 – – – RFS-LDA 93AD + 101NC 
Shao et al. [45] 92.68 89.47 95.45 – Hypergraph based 160AD + 211NC 
Gao et al. [46] 90.50 84.60 95.0 93.90 Mutil-modal based 352AD + 427NC 
Xing et al. [47] 91.34 86.23 93.51 – Mutil-modal CNN 167AD + 214NC 
Gao et al. [48] 92.00 89.10 94.00 90.50 Mutil-modal CNN 196AD + 227NC 
Huang et al. [15] 90.10 90.85 89.21 90.84 Mutil-modal CNN 465AD + 480NC 
Lin et al. [16] 92.28 90.38 94.37 92.76 Mutil-modal CNN 362AD + 308NC 
Narazani et al. [23] 89.60 – – – Mutil-modal CNN 257AD + 270NC 
Zhang et al. [49] 91.07 – – 94.44 Mutil-modal CNN 157AD + 156NC 
Angelica et al. [17] 92.11 92.80 91.33 – Mutil-modal network 250AD + 250NC 
OURS 94.61 92.19 97.22 94.71 Mutil-modal CNN 215AD + 246NC  

Table 7 
Classification results of sMCI vs. pMCI in studies based on single-modality and multimodal methods.  

Studies ACC SEN SPE AUC Method Subjects 

Wen et al. [28] 74.00 – – – ROI-based 3D CNN 298sMCI + 295pMCI 
Kang et al. [50] 66.70 – – – 2D CNN 90sMCI + 126pMCI 
Wen et al. [28] 69.00 – – – 3D CNN 298sMCI + 295pMCI 
Shao et al. [45] 75.48 83.84 63.26 70.34 Hypergraph based 273EMCI + 187LMCI 
Gao et al. [46] 73.60 59.10 82.10 73.70 Mutil-modal based 342sMCI + 234pMCI 
Huang et al. [15] 72.22 73.44 71.25 – Mutil-modal CNN 441sMCI + 326pMCI 
Zhang et al. [51] 75.50 – – – Mutil-modal CNN 343sMCI + 120pMCI 
Lin et al. [16] 74.10 75.00 73.08 76.60 Mutil-modal CNN 183sMCI + 233pMCI 
Gao et al. [48] 75.30 77.30 74.10 69.90 Mutil-modal CNN 342sMCI + 234pMCI 
OURS 77.19 68.18 81.86 75.56 Mutil-modal CNN 238sMCI + 151pMCI  
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